a2 United States Patent

US009244996B2

(10) Patent No.: US 9,244,996 B2

Bourbonnais et al. (45) Date of Patent: *Jan. 26, 2016
(54) REPLICATING DATA ACROSS MULTIPLE (56) References Cited
COPIES OF A TABLE IN A DATABASE
SYSTEM U.S. PATENT DOCUMENTS
(75) Inventors: Serge B(.)urbonnais, Palo Alto, CA . igg?zé;g ﬁ ig;}ggg g;l;e; :;al'
(US); Elizabeth B. Hamel, Morgan HIH, 4,646,229 A 2/1987 Boyle
CA (US); Bruce G. Lindsay, San Jose, (Continued)
CA (US); Stephen J. Todd, Winchester
(GB) FOREIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines EP 0674260 B1 8/2002
Corporation, Armonk, NY (US)
OTHER PUBLICATIONS
(*) Notice: Subject. to any disclaimer,. the term of this USS. Appl. No. 10/789,775.
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 1401 days. (Continued)
This patent is subject to a terminal dis- Primary Examiner — Ann J Lo
claimer. (74) Attorney, Agent, or Firm — Stephen R. Tkacs; Stephen
J. Walder, Jr.; Mohammed Kashef
(21) Appl. No.: 11/771,801
. 57 ABSTRACT
(22) Filed: Jun. 29, 2007
A mechanism for handling transaction messages in asynchro-
(65) Prior Publication Data nous data replication in a database system, in which the
database system includes a source node and a target node, and
US 2007/0288537 Al Dec. 13, 2007 each transaction message has information concerning a row
change to a table copy at the source node. The mechanism
determines whether a first transaction message has a depen-
Related U.S. Application Data dency on a preceding non-completed transaction message.
(63) Continuation of application No. 10/789,775, filed on dResponswe to the first transaction message having a depen-
ency on the preceding non-completed transaction, the
Feb. 27, 2004, now Pat. No. 7.490,083. mechanism holds the first transaction message, completes the
preceding non-completed transaction message including
(31) Int.Cl applying the row change associated with the preceding non-
GO6F 17/30 (2006.01) completed transaction message to the table copy at the target
(52) US.CL node, and responsive to completing the preceding non-com-
CPC ..o, GO6F 17/30578 (2013.01) pleted transaction message, releases the first transaction mes-
(58) Field of Classification Search sage and applying the row change associated with the first
CPC e GOG6F 17/30578 transaction message to the table copy at the target node.
USPC ittt 707/1, 201

See application file for complete search history.

Check TXondone cygared
queue to see if
[dependencies cleared.

05
Not Cleared,

Mark non-completed
TX thet TX depends
upon.

e

Browser thread exarnines next
TX In receive qusue.

14 Claims, 4 Drawing Sheets

Place TX on work queue.

08
Remove TXs from work j
queus by plurality of apply
agents.

¥ 00
Apply changes in TXs to j
target in parallel by apply
agents.

Remove dependencies on
done TXs from held TXs.

Yes 2

US 9,244,996 B2
Page 2

(56)

4,648,036
4,853,843
5,758,333
5,787,247
5,791,769
5,806,075
5,832,514
5,884,324
5,890,154
5,894,567
5,916,307
5,920,860
5,991,768
5,995,980
6,029,177
6,029,178
6,058,389
6,058,401
6,061,689
6,067,541
6,073,140
6,092,220
6,105,017
6,122,630
6,144,966
6,154,847
6,202,149
6,209,000
6,301,589
6,343,219
6,353,834
6,412,017
6,438,558
6,446,144
6,466,950
6,490,595
6,526,417
6,594,676
6,615,223
6,622,152
6,668,260
6,738,082
6,865,160
6,889,231
6,934,727
6,973,463
6,973,464
6,976,022
6,993,539
7,003,531
7,031,974
7,069,295
7,072,911
7,076,481
7,076,508
7,085,764
7,203,687
7,203,712
7,240,054
7,330,860
7,398,285
7,490,083
2002/0049776
2002/0156761
2002/0165724
2002/0188624
2003/0041074
2003/0154238
2003/0177194
2003/0182319
2003/0187857
2003/0188035
2003/0208511
2004/0024771
2004/0162859

References Cited

U.S. PATENT DOCUMENTS

B 0 > 0 e e 0 B D B B 0 3 0 B B B 0 0 D >)

3/1987
8/1989
5/1998
7/1998
8/1998
9/1998
11/1998
3/1999
3/1999
4/1999
6/1999
7/1999
11/1999
11/1999
2/2000
2/2000
5/2000
5/2000
5/2000
5/2000
6/2000
7/2000
8/2000
9/2000
11/2000
11/2000
3/2001
3/2001
10/2001
1/2002
3/2002
6/2002
8/2002
9/2002
10/2002
12/2002
2/2003
7/2003
9/2003
9/2003
12/2003
5/2004
3/2005
5/2005
8/2005
12/2005
12/2005
12/2005
1/2006
2/2006
4/2006
6/2006
7/2006
7/2006
7/2006
8/2006
4/2007
4/2007
7/2007
2/2008
7/2008
2/2009
4/2002
10/2002
11/2002
12/2002
2/2003
8/2003
9/2003
9/2003
10/2003
10/2003
11/2003
2/2004
8/2004

Gallant
Ecklund

Bauer et al.
Norin et al.
Yang

Jain et al.
Norin et al.
Cheng et al.
Hsiao et al.
Dodd et al.
Piskiel et al.
Maheshwari et al.
Sun et al.
Olson et al.
Sadiq et al.
Martin et al.
Chandra et al.
Stamos et al.
Chang et al.
Raju et al.
Morgan et al.
Palmer et al.
Kleewein et al.
Strickler et al.
Roberts
Schofield et al.
Hedegard
Klein et al.
Hirashima et al.
Wada

Wong et al.
Straube et al.
Stegelmann
Habusha et al.
Ono

Candee et al.
Perry

Moore

Shih et al.

Sinn et al.
Zoltan

Dong et al.
Bare

Souder et al.
Berkowitz et al.
Merrells et al.
Gao

Vemuri et al.
Federwisch et al.
Holenstein et al.
Subramaniam
Sutherland et al.
Doman et al.
Osborne et al.

Bourbonnais et al.

Bangel et al.
Adiba et al.
Adiba et al.
Adiba et al.
Adiba et al.
Kisley

Bourbonnais et al.

Aronoff et al.
Chen et al.
Blankesteijn
Landin et al.
Vasudevan et al.
Murphy et al.
Crocker et al.
Morrison
Ford
Lubbers et al.
Earl et al.
Jain et al.
Guo et al.

2004/0250032 Al 12/2004 Jietal.
2005/0102295 Al 5/2005 Murray et al.
2005/0108621 Al 5/2005 Kim et al.
2005/0114285 Al 5/2005 Cincotta
2005/0149578 Al 7/2005 Sustman et al.
2005/0193024 Al 9/2005 Beyer et al.
2005/0193039 Al 9/2005 Adiba et al.
2005/0193041 Al 9/2005 Bourbonnais et al.
2005/0193093 Al 9/2005 Mathew et al.
2005/0223163 Al 10/2005 Ogasawara et al.
2005/0262055 Al 11/2005 Newport
2006/0031286 Al 2/2006 Sagawa
2006/0294333 Al 12/2006 Michaylov et al.
2007/0067313 Al 3/2007 Garza et al.
2007/0083569 Al 4/2007 Wong et al.
2007/0288537 Al 12/2007 Bourbonnais et al.
2008/0098044 Al 4/2008 Todd
2008/0163222 Al 7/2008 Bourbonnais et al.
2009/0037398 Al 2/2009 Horvitz et al.
2009/0132671 Al 5/2009 Chkodrov et al.
2010/0161743 Al 6/2010 Krishnamurthi et al.

OTHER PUBLICATIONS

U.S. Appl. No. 12/049,196.

Final Office Action mailed Oct. 28, 2010 for U.S. Appl. No.
12/049,196; 14 pages.

Interview Summary mailed Sep. 9, 2010 for U.S. Appl. No.
12/049,196; 3 pages.

Appeal Brief filed Mar. 22, 2011, U.S. Appl. No. 12/049,196, 21
pages.

http://dbforums.com/arch/69/2002/12/634367, 2002, 2 pages.

U.S. Appl. No. 10/788,556.

U.S. Appl. No. 10/788,651.

U.S. Appl. No. 10/789,326.

U.S. Appl. No. 10/789,625.

U.S. Appl. No. 10/789,656.

U.S. Appl. No. 12/964,807.

Bernstein, Philip A., et al., “Context-based prefetch—an optimiza-
tion for implementing objects on relations”, VLDB Journal, 2000, pp.
177-189.

Carino, Jr., Felipe; et al., “StorHouse Metanoia—New Applications
for Database, Storage & Data Warehousing”, Storage & Data Ware-
housing, 2001, pp. 521-531.

Gao, Lei et al., “Application Specific Data Replication for Edge
Services”, May 2003, ACM Press, pp. 449-460.

Haritsa, Javant R. , et al., “Value-Based Scheduling in Real-Time
Database Systems”, VLDB Journal, 2 117-152, 1993, pp. 117-126.

Haskin, Roger, et al., “Recovery Management in QuickSilver”, Feb.
1988, ACM Press, vol. 6, issue 1, pp. 82-108.

Jennings, Roger, “SQL Server 2000 Gains on Oracle”, Visual Basic
Programmer’s Journal, vol. 10, 2000, pp. 20-29.

O’Connell, William, et al., “Optimizer and Parallel Engine Exten-
sions for Handling Expensive Methods Based on Large Objects”,
IEEE, 1999, pp. 304-313.

Pu, Calton, et al., “Replica Control in Distributed Systems: An Asyn-
chronous Approach”, Apr. 1991, ACM Press, vol. 20, issue 2, pp.
377-386.

Stacey, Doug “Replication: D82, Oracle, or Sybase?”, Dec. 1995,
ACM Sigmod record, vol. 24, issue 4, pp. 95-101.

Dimitrios Georgakopoulos et al., Chronological Scheduling of
Transactions with Temporal Dependencies, Dec. 30, 1990.

Gao, Lei et al., “Application Specific Data Replication for Edge
Services,” ACM 2003, pp. 449-460.

Miled, Zina Ben, “Global Change Master Directory: Object-Oriented
Active Asynchronous Transaction Management in a Federated Envi-
ronment Using Data Agents,” ACM 2001, pp. 207-214.

Wolanow, A. “One Enterprise, One Interface,” Intelligent Enterprise,
vol. 2, No. 4, Mar. 9, 1999, 1 page.

Yu, Haifeng et al., “Design and Evaluation of a Conit-Based Con-
tinuous Consistency Model for Replicated Services,” ACM 2002,
vol. 20, No. 3, pp. 239-282.

Notice of Allowance mailed Sep. 26, 2012 for U.S. Appl. No.
13/437,198, 12 pages.

US 9,244,996 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Response to Office Action filed with the USPTO on Sep. 18, 2012 for

U.S. Appl. No. 13/437,198, 6 pages.

Office Action mailed Jan. 17, 2012 for U.S. Appl. No. 12/049,196; 6
ages.

II)’e%ition to Revive, RCE and Response to Final Office Action filed

Dec. 23, 2011 for U.S. Appl. No. 10/788,556; 41 pages.

Office Action mailed May 7, 2012 for U.S. Appl. No. 12/964,807; 22

pages.

Response to Office Action filed Apr. 11, 2012, U.S. Appl. No.

12/049,196, 12 pages.

U.S. Appl. No. 13/437,198.

Interview Summary dated Aug. 7, 2012 for U.S. Appl. No.
12/964,807; 3 pages.

Notice of Allowance mailed Jun. 11, 2012 for U.S. Appl. No.
12/049,196; 15 pages.

Notice of Allowance mailed Aug. 16, 2012 for U.S. Appl. No.
12/964,807; 10 pages.

Office Action mailed Jun. 20,2012 for U.S. Appl. No. 13/437,198; 27
pages.

Response to Office Action filed with the USPTO on Aug. 6, 2012 for
U.S. Appl. No. 12/964,807, 10 pages.

Kumar-Chatterjee, Pav, “Q Replication Components in IBM Repli-
cation Server”, Enterprise Articles IBM, Aug. 2010, 9 pages.

U.S. Patent Jan. 26, 2016
SOURCE 101
Table
Copies Send
102 Queue 105

A
v

Recovery
Log 103

A

Capture
104

N

Sheet 1 of 4

US 9,244,996 B2

N

Receive
Queue 107

AN

TARGET 106

Apply 108

110

Work Queue

Agents
.‘ hreads11

Browser
Thread
109

Done Queue
111

FIG. 1

U.S. Patent Jan. 26, 2016 Sheet 2 of 4 US 9,244,996 B2

201

Browser thread examines next
TX in receive queue. 202

AN

|
Remember T&(description.
203

Yes

204 dependencies?

queue to see if Place TX on work queue.

Check TXon done | Gleared jz

dependencies cleared. 205 ¥ 08
Not Cleared¢ j Remove TXs from work
queue by plurality of apply
Mark non-completed agents.

TX that TX depends
upon.
¢ jzos Apply changes in TXs to

]

target in parallel by apply

5t
— Hold TX. agents. 2
] j

Update control table.
[]
Place TXs on done queue.

Done
TXs marked
ith held depende
TXs?

No

213
Remove dependencies on
done TXs from held TXs.
Yes 214
No Held
TXs now dependency Yes
free?

FIG. 2

U.S. Patent Jan. 26, 2016 Sheet 3 of 4 US 9,244,996 B2

Browse TX from
receive queue.

h J

Get next row
change.

Change = inse
or key update?

301

302

304 305

Yes Mark TX and
preceding TX.

key = old key of

Change =
delete or key
update?

308
307

Mark TX and
preceding TX.

311

Mark TX and
preceding TX.

Last change?

Step 207

dependencies?

Step 204

FIG. 3

U.S. Patent Jan. 26, 2016 Sheet 4 of 4

TN

DB LOG 103

Tx1:
Tx2:
Tx3:
Tx2:
Tx1:
Tx3:
Tx3:
Tx2:

insert T1
update T2
delete T1
update T2
commit
insert T1
commit

commit

N~ —~

Capture
104

v

Tx2:
Tx2:
Tx2:

update T2,key=1
update T2,key=3
commit

Tx3:
Tx3:
Tx3:

delete T1,key=1
insert T1,key=2
commit

Tx1:
Tx1:

insert T1,key=1
commit

——

Apply
108

FIG. 4

US 9,244,996 B2

US 9,244,996 B2

1
REPLICATING DATA ACROSS MULTIPLE
COPIES OF A TABLE IN A DATABASE
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of application Ser. No.
10/789,775, filed Feb. 27, 2004, the entire contents of which
are incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates to the maintenance of mul-
tiple copies of tabular data, and more particularly to providing
parallelized apply of asynchronously replicated transactional
changes to a target database.

BACKGROUND OF THE INVENTION

In a relational database management system, data is stored
in a multiplicity of tables having a multiplicity of rows
(records), the rows having a multiplicity of columns (fields).
A subset of the columns are designated as key columns and
the combination of values of the key columns of the rows of a
single table must be distinct. It is frequently desired to main-
tain copies (replicas) of a first table residing in a first database
of'the relational variety in one or more other databases of the
relational variety. Furthermore, it is desired that changes (in-
serts, deletes, and updates) to rows of the table in the first
database be copied (replicated) to the table copies residing in
the other databases. Additionally, it is sometimes desired that
the changes made to any of the table copies residing in any of
the several relational databases be copied (replicated) to all
the other table copies.

The propagation of changes made to one copy of the table
may be synchronous or asynchronous to the original change.
Synchronous propagation makes changes at all copies as part
of the same transaction (unit of work) that initiates the origi-
nal changes. Asynchronous propagation copies the original
changes to the other table copies in separate transactions,
subsequent to the completion of the transaction initiating the
original changes. Synchronous change propagation requires
that the database management systems maintaining all (or
most) copies be active and available at the time of the change.
Also, synchronous change propagation introduces substantial
messaging and synchronization costs at the time of the origi-
nal changes.

The means of detecting changes to be propagated asyn-
chronously can be active or passive. Active change detection
isolates the changes, at the time of the change, for later pro-
cessing using database triggers or a similar mechanism. Pas-
sive change detection exploits information from the database
recovery log, where changes are recorded for other purposes,
to deduce what rows, of which tables, were changed as well as
both the old and new values of changed columns.

In a typical database environment, there are varying levels
of parallel transactional processing, involving concurrent
transactions that execute read and write actions against data-
base information. Fundamental to the nature of a data repli-
cation process is the choice of how to move, order and apply
that stream of parallel database event changes to a target
database.

One conventional approach provides a certain degree of
apply parallelism by grouping related tables into distinct sets
and having each set oftables applied by a completely separate
program. However, this approach places a heavy burden the

10

15

20

25

30

35

40

45

50

55

60

65

2

user, who may have difficulty knowing which tables are logi-
cally related and must be grouped together.

In another conventional approach, parallelism is provided
but without preserving the source data event order. Thus, to
provide data integrity, a “shadow” table is used to track and
maintain each individual data row change. This approach,
however, has a significant overhead cost in both making
updates and in performing lookups against the shadow table.
Other conventional approaches provide parallelism but by
using a very proprietary way that has no or limited applica-
bility outside of a specific system.

BRIEF SUMMARY OF THE INVENTION

In general, in one aspect, this specification describes a
method for handling transaction messages in asynchronous
data replication in a database system, in which the database
system includes a source node and a target node, and each
transaction message has information concerning a row
change to a table copy at the source node. The method
includes determining whether a first transaction message has
adependency on a preceding non-completed transaction mes-
sage. Responsive to the first transaction message having a
dependency on the preceding non-completed transaction, the
method further includes holding the first transaction message,
completing the preceding non-completed transaction mes-
sage including applying the row change associated with the
preceding non-completed transaction message to the table
copy at the target node, and responsive to completing the
preceding non-completed transaction message, releasing the
first transaction message and applying the row change asso-
ciated with the first transaction message to the table copy at
the target node.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones,
and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Fea-
tures and advantages will be apparent from the description
and drawings, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system for providing parallel apply in
asynchronous data replication in a database system in accor-
dance with one implementation.

FIG. 2 is a flowchart illustrating a method for providing
parallel apply in asynchronous data replication in a database
system in accordance with one implementation.

FIG. 3 is a flowchart illustrating in more detail one imple-
mentation of the determination of dependencies in the
method for providing parallel apply in asynchronous data
replication in a database system.

FIG. 4 illustrates an example of the method for providing
parallel apply in asynchronous data replication in a database
system.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE INVENTION

This specification describes a method for providing paral-
lel apply in asynchronous data replication in a database sys-

US 9,244,996 B2

3

tem. The following description is presented to enable one of
ordinary skill in the art to make and use the invention and is
provided in the context of a patent application and its require-
ments. The present invention is not intended to be limited to
the implementations shown but is to be accorded the widest
scope consistent with the principles and features described
herein.

FIG. 1 illustrates one implementation of a system for pro-
viding parallel apply in asynchronous data replication in a
database system. The system includes a source node 101 and
a target node 106. At the source node 101 are one or more
source table copies 102, a recovery log 103, a Capture pro-
gram 104 (“Capture”), and a send queue 105. At the target
node 106 are a receive queue 107, an Apply program (“Ap-
ply”) 108 and one or more target table copies 113. Apply 108
includes a browser thread 109, a work queue 110, a done
queue 111, and one or more agent threads 112. Capture 104
reads changes of committed transactions from the recovery
log 103 and sends them to Apply 108 running on the target
node 106. Apply 108 eventually re-executes the changes of
the transactions.

In one implementation, the tabular data at the source table
copies 102 whose changes are to be replicated to the target
table copies 113 reside in a Relational Database management
System (RDBMS) such as the DB2™ RDBMS product
offered by International Business Machines Corporation™.
The RDBMS maintains a recovery log 103 and a means to
query its contents. The entries of the recovery log 103
describe changes to rows of the source tables 102 at source
node 101. More specifically, the entries in the recovery log
103 contain information defining (1) the table being changed,
(2) the value of the key column in the row being changed, (3)
the old and new values of all columns of the changed row, and
(4) the transaction (unit of work) containing the change.
Recovery log entries for inserted rows contain only new col-
umn values while recovery log entries for deleted rows con-
tain only old column values. Recovery log entries for updated
rows contain the new and old values of all row columns. The
order of entries in the recovery log reflect the order of change
operations within each transaction and the order of transac-
tion commit records reflects the order in which transactions
are completed. The format of a row change log record can be
abstracted as follows:

transid tableld old key

cols

old non-key new key new non-
cols cols key cols

type

To control the propagation of changes to table copies, copy
control tables (not shown) designating table copies and their
target table copies are used by the replication system. The
control information includes, but is not limited to: (1) the
name of the copied table, (2) a list of the table copies’ key
columns, (3) filtering and projection information, and (4) the
message channels on which to send descriptions of changes to
the target table copies.

The list of key columns defined for a replication definition
will be hereafter referred to as the “replication key”. The
replication key should not be confused with other attributes of
source or target table copies which may use primary key
columns or foreign key columns. However, it is possible that
the primary key of a source or target table copy may be
comprised of the same set of columns as are specified for the
replication key. The replication key uniquely identifies a row
entity in a target table copy so that it can be located by Apply,
in applying an update or delete change operation. Because the

10

15

20

25

30

35

40

45

50

55

60

65

4

replication key uniquely identifies a row entity, it is used in the
serialization of changes made to these unique row entities.

The type of row operation in change log records can be
delete, insert, update, or key update. Updates that do not
modify the replication key (update) are distinguished from
updates that do modify the replication key (key update).

The changes made to table copies are determined by read-
ing the recovery log. Changes are saved in memory until a
transaction commit record is seen on the recovery log. Only
committed transactions at the source node 101 are moved and
applied to target nodes 106. Change records are grouped into
their originating source transaction units and written as one
logical message unit. Because a logical transaction message
can be quite large, it may be broken down into a plurality of
physical messages. In this specification, a “transaction mes-
sage” refers to a logical transaction message. Changes to be
sent to the other table copies are sent via logical message units
on the recoverable queues (e.g. send queue 105 and receive
queue 107) designated in the copy control tables for the table
copies of the log records.

The transactions messages are put on the recoverable
queue in the source commit order. Within each transaction,
the change records are arranged in the order in which they
occurred within the source transaction. In one implementa-
tion, there is no inherent parallelism in the movement of the
committed transactional data. The queuing of the transac-
tional data is serialized such that data is moved to the target
node 106 in the source transactional commit order.

In capturing the information for individual change records,
the type of change operation for each change determines what
replication key column values will be sent as part of that
change record. For insert and update types of change records,
the new replication key column values are sent as part of the
change records within the transaction message. By definition,
an insert is a new record and therefore has no old values. By
definition, the new replication key column values of an update
type of change record must be the same as the old replication
key column values. For delete type change records, there is by
definition no new record, only an old record, and therefore the
old replication key column values are sent. For key update
records, the old replication key column values are sent in
addition to the new replication key column values.

Returning to FIG. 1, for any given receive/recoverable
queue 107 that is populated with transactions from a given
source node 101 and is to be used as the source of changed
data to be applied to a given target node 106, Apply 108 has a
browser thread 109 and one or more agent threads 112, where
the number of agents is determined through user input. The
work queue 110 and the done queue 111, structures internal to
Apply 108, are created for the purpose of communication
between the browser thread 109 and the agent threads 112.

FIG. 2 is a flowchart illustrating one implementation of a
method for providing parallel apply in asynchronous data
replication in a database system. First, the browser thread 109
examines the next transaction message in the receive queue
107, via step 201. The values of the replication key columns
for each row change in the transaction message is remem-
bered, via step 202. In one implementation, information
describing the transaction, including the values of the repli-
cation key columns, is remembered, i.e., stored in a logical
data structure, and tracked. Other information concerning the
transaction can also be remembered. The logical data struc-
ture also tracks any preceding non-completed transaction
messages, including any subsequent transaction messages
that are dependent upon the transaction message.

Next, the browser thread 109 determines if the transaction
message has dependencies, via step 203. A transaction mes-

US 9,244,996 B2

5

sage has a dependency if the preservation of the integrity of
the data requires that one or more preceding non-completed
transaction messages be applied prior to the application of the
current transaction message. If the transaction message has
dependencies, then the browser thread 109 checks the trans-
action messages on the done queue 111 to see if the comple-
tion of any of those transaction messages clears the depen-
dencies, via step 204. If not, then non-completed transaction
messages upon which the transaction message is dependent
are marked to indicate the transaction message’s dependency,
via step 205. The current transaction message is also marked
with its dependencies and held, via step 206, and not allowed
to be applied. If it does not have any dependencies, then the
transaction message can be applied in parallel with the pre-
ceding transaction(s) currently being applied, and is thus
placed on the work queue 110, via step 207. Once placed on
the work queue 110, the transaction message becomes eli-
gible to be applied by any available agent thread 112. The
more agent threads 112 that are made available to be used, the
more transaction messages which are eligible for application
can be applied in parallel.

In one implementation, application of the changes is per-
formed using generated Structured Query Language (SQL)
statements of a non-proprietary nature. These SQL state-
ments may or may not be exactly the same as the originating
SQL statements made at the source node 101. However, the
net effect of these changes is typically identical to the net
effect of the changes made by the originating SQL state-
ments. For example, an originating SQL statement such as
“DELETE FROM SOURCE.TABLE” could be made. This
statement would have the effect of deleting all rows from the
table named SOURCE.TABLE. If there were five rows in the
table at this point in time, then there would be five rows
deleted, and five log records would be generated on the recov-
ery log. Each log record would indicate the delete operation
of one of the five rows. From the inspection of the recovery
log, the five operations would be used to capture the informa-
tion of five distinct data events, all of which occurred during
a single transaction. This transaction would be queued and
moved to the target node 106, and the application of these
changes would be made as five distinct SQL statements, with
each SQL statement targeting one of the individual rows of
the corresponding target table copy. At the commit point of
this applied transaction, the functional equivalence point is
then reached, such that the same five rows have been deleted
from the corresponding source and target table copies. Thus,
the method and system in accordance with the present inven-
tion is a non-proprietary implementation of Apply. It could be
extended for use in any database that accepts standard SQL
and has the general database property of atomicity.

Once the application is complete, the transaction message
is placed on the done queue 111, via step 211. The indicators
of held transaction messages dependent on this now com-
pleted transaction message, if any exist, which were previ-
ously marked (via step 205) can now be checked, via step 212.
These held transaction messages will be changed to remove
the dependency or dependencies that existed regarding the
now completed transaction message, via step 213. After
removal of these dependencies, each of the held transaction
messages are checked to see if any other dependencies
remain, via step 214, against other preceding still non-com-
pleted transaction messages. Any held transaction message
that is now determined to be dependency free, via step 214,
can be safely applied in parallel with the other transaction
messages currently being applied, and thus placed on the

30

40

45

55

6

work queue 110, via step 207. For held transaction messages
with remaining dependencies, they remain as held transaction
messages.

FIG. 3 is a flowchart illustrating in more detail the deter-
mining of dependencies in the method for providing parallel
apply in asynchronous data replication in a database system.
For every transaction message that the browser thread 109
examines, critical pieces of information regarding that trans-
action are assessed and tracked. For each row change that
makes up the transaction message, information regarding the
values of the replication key columns is noted and tracked as
part of that transaction. From the time of the initial examina-
tion of a transaction by the browser thread 109 until the
eventual placement of that transaction message on the done
queue 111 after successful application, the replication key
column information for every row change within this trans-
action message is used to assess newly arriving transactions,
to determine their eligibility for placement on the work queue
110. If a newly assessed transaction message contains row
changes with replication key column values that match the
values of the replication key columns from row change of any
preceding transaction messages that have not yet completed,
then this newly assessed transaction message is not eligible
yet for application and must not yet be placed on the work
queue 110.

As illustrated in FIG. 3, the browser thread 109 examines a
transaction message in the receive queue, via step 301. The
transaction message can contain a plurality of row changes.
For each of the row changes, steps 302 through 312 are
performed. The browser thread 109 examines the next change
in the transaction message, via step 302. If the type of change
is an insert or key update, via step 303, then the browser
thread 109 determines if the new replication key value of the
insert or key update change is the same as the old replication
key value of any preceding non-completed transaction mes-
sages, via step 304. If they are the same, then the preceding
non-completed transaction message is marked to indicate the
transaction message’s dependency, and the transaction mes-
sage is marked to indicate the preceding non-completed
transaction message upon which it depends, via step 305.

The new replication key column values of an insert or key
update type of row change represent the introduction of a new
row entity. Either of these row actions could have been pre-
ceded by a delete of that row entity (carrying old replication
key column values) or by a key update which had the net
effect of a delete followed by an insert, where it would be the
delete aspect of the prior row action that could potentially
have commonality with this row action and is therefore of
interest. Therefore, the new replication key column values of
an insert or key update row change are compared to the old
replication key column values of all preceding non-com-
pleted transaction messages.

The method by which it is determined that a new or old
replication key value is the same as another new or old rep-
lication key value can be relaxed so long as the same replica-
tion key values are not determined to be different. Those with
ordinary skill in the art at the time of the invention will
recognize that the comparison of the result of any determin-
istic function (e.g., ahash code function) can be used to insure
that identical replication key values are matched, while dif-
fering replication key values may be incorrectly matched. The
performance benefits of simplified comparing can outweigh
the loss of parallelism due to incorrectly matched replication
key values.

If the type of change is a delete or a key update, via step
306, then the browser thread 109 determines if the old repli-
cationkey value of the delete or key update change is the same

US 9,244,996 B2

7

as the new replication key value of any preceding non-com-
pleted transaction message, via step 307. If they are the same,
then the preceding non-completed transaction message is
marked to indicate the transaction message’s dependency,
and the transaction message is marked to indicate the preced-
ing non-completed transaction message upon which it
depends, via step 308.

The new replication key column values of an update type of
row change represent the change of non-replication key col-
umn values of an existing row entity. This row action could
have been preceded by an insert of that row entity (carrying
new replication key column values), or by a key update which
had the net effect of a delete followed by an insert, where it
would be the insert aspect of the prior row action that could
potentially have commonality with this row action and is
therefore of interest. Therefore, the new replication key col-
umn values of an update row change are compared to the new
replication key column values of all preceding non-com-
pleted transaction messages.

If the type of change is an update, via step 309, then the
browser thread 109 determines if the new replication key
value of the update change is the same as the new replication
key value of any preceding non-completed transaction mes-
sage, via step 310. If they are the same, then the preceding
non-completed transaction message is marked to indicate the
transaction message’s dependency, and the transaction mes-
sage is marked to indicate the preceding non-completed
transaction message upon which it depends, via step 311.

The old replication key column values of a delete or key
update type of row change represent the deletion of an exist-
ing row entity. Either of these row actions could have been
preceded by an insert of that row entity (carrying new repli-
cation key column values), by an update of that row entity
(carrying new replication key column values), or by a key
update which had the net effect of a delete followed by an
insert, where it would be the insert aspect of the prior row
action that could potentially have commonality with this row
action and is therefore of interest. Therefore, the old replica-
tion key column values of a delete or key update row change
are compared to the new replication key column values of all
preceding non-completed transaction messages.

Once the last change in a transaction message has been
examined, via step 312, and the transaction message is deter-
mined to have dependencies, via step 313, the process con-
tinues with step 204 (FIG. 2). If the transaction message is
determined to have no dependencies, then the process con-
tinues with step 207 (FIG. 2).

With the method in accordance with the present invention,
whole source transactions are executed as whole target trans-
actions, and changes to any individual table row entity, as
determined by the specified and required replication key col-
umn values, are serialized to the same degree that those
changes were serialized at the source database. Transactions
with no dependencies are likely to be committed in a different
order from the source commit order.

FIG. 4 illustrates an example of the method for providing
parallel apply in asynchronous data replication in a database
system. The transaction data found in the recovery log 103 is
grouped by transaction and those transactions are sent to the
send queue 105 in source commit order. For example, trans-
action 1 (Tx1), transaction 2 (Tx2), and transaction 3 (Tx3)
were started in Tx1-Tx2-Tx3 order, but were committed in
Tx1-Tx3-Tx2 order. Thus, they are sent to the receive queue
107 in committed Tx1-Tx3-Tx2 order.

When Tx1 arrives on the receive queue 107, the browser
thread 109 examines Tx1, via step 201. Information concern-
ing Tx1 is remembered, via step 202. Such information

35

40

45

55

8

includes the fact that Tx1 involves an insert into table T1 of a
row with replication key value=1. Since there are no preced-
ing transactions, Tx1 has no dependencies, via step 203. Tx1
is thus placed on the work queue, via step 207.

As Tx1 is removed from the work queue, via step 208, and
being applied, via step 209, the browser thread 109 examines
Tx3, via step 201. Information concerning Tx3 is remem-
bered, via step 202. Such information includes the fact that
Tx3 involves a delete from table T1 of a row with replication
key value=1 and an insert into table T1 a row with replication
key value=2. The browser thread 109 determines that Tx3 has
adependency for table T1 delete, since the old replication key
value of the delete (key=1) is the same as the new replication
key value for the insert in Tx1, via step 307. Assuming that
Tx1 has not yet completed, there are no transaction messages
on the done queue 111 so steps 204 and 205 are not per-
formed. Tx1 is thus marked to indicate the dependency of
Tx3, and Tx3 is marked to indicate it is dependent upon Tx1,
via step 308. Tx3 is held, via step 206.

The browser thread 109 next examines Tx2 after it arrives
on the receive queue 107, via step 201. Information concern-
ing Tx2 is remembered, via step 202. Such information
includes the fact that Tx2 involves an update in table T2 of a
row with replication key=1, and an update in table T2 of a row
with replication key=3. The browser thread 109 determines
that Tx2 has no dependencies, via step 203 (and step 310), and
places Tx2 on the work queue 110, via step 207.

When application of Tx1 completes, via step 209, the con-
trol table is updated to indicate its completion, via step 210.
Tx1 is also placed on the done queue 111, via step 211. From
the marks added to Tx1 above, the browser thread 109 knows
to remove from Tx3 its dependency upon Tx1. The browser
thread 109 then checks if Tx3 is now dependency free, via
step 212. Since Tx3 is now dependency free, itis placed on the
work queue, via step 207.

In one implementation, the receive queue 107 is a persis-
tent queue, while the work queue 110 and the done queue 111
are not. The persistence of the receive queue 107 is to protect
the integrity of the data in case of a system failure or some
other interruption during the transaction application process.
However, the persistent nature of the receive queue 107
requires that messages in the receive queue 107 be removed
after transactional messages have been successfully applied.
Otherwise, if the process is interrupted, the system upon
restart will attempt to apply the changes in the transaction
messages on the receive queue 107 again, leading to errors.

One possible method of removal is a two-phase commit
approach, where the delete of the message from the receive
queue 107 is committed as part of the same transaction at the
target node 106 that applies the changes. Another method is to
use an asynchronous “cleanup” approach, as described
below. The asynchronous cleanup approach has the advan-
tage of defraying the delay and overhead costs associated
with the two-phase commit approach.

In the asynchronous cleanup approach, it is noted that a
control table is updated and committed as part of the transac-
tion that applies the changes associated with a logical repli-
cation transaction message at a target node 106. This allows
for abackground task to be executed on a periodic basis which
deletes messages from the receive queue 107 based on the
existence of an entry in the control table indicating that this
message has been successfully applied. After the delete of one
or more logical transaction messages from the receive queue
107 has been committed, entries for the logical transmission
message from the control table can be safely removed. If the
logical transaction message comprises a plurality of physical
transaction message, then each physical transaction has its

US 9,244,996 B2

9

own entry in the control table. Each entry for the physical
messages is individually removed. This approach avoids the
cost of a two-phase commit since the control table rows are
deleted after the committed delete of the messages on the
receive queue 107. If entries in the control table exist without
corresponding queue messages because those messages have
already been deleted due to some process interruption, this
poses no possible harm to the system, and such extra control
table rows can be safely removed at anytime.
A method for providing parallel apply in asynchronous
data replication in a database system has been disclosed. The
method and system provides a high speed parallel apply of
transactional changes to a target node such that the parallel
nature of the application of changes does not compromise the
integrity of the data. The method and system detects, tracks,
and handles dependencies between transaction messages to
be applied to the target node. If a transaction message has a
dependency on one or more preceding transaction messages
whose applications have not yet completed, that transaction
message is held until the application completes. In addition,
the method and system requires significantly less overhead
than conventional approaches and is easily adaptable to vari-
ous types of database systems.
Modification may be made to the implementations dis-
cussed above and those modifications are within and scope of
the present invention. Accordingly, many modifications may
be made by one of ordinary skill in the art without departing
from the scope of the appended claims.
What is claimed is:
1. A method for handling transaction messages in asyn-
chronous data replication in a database system, the database
system including a source node and a target node, the method
comprising:
receiving a first transaction message from the source node
in a receive queue of the target node, wherein the first
transaction message comprises at least one recovery log
entry for a row change on atable copy at the source node;

determining whether the first transaction message depends
on a preceding non-completed transaction message;

responsive to the first transaction message not depending
on the preceding non-completed transaction, applying
the row change associated with the first transaction mes-
sage to the table copy at the target node without holding
the first transaction message; and

responsive to application of the row change associated with

the first transaction message being complete, placing the
first transaction message in a done queue at the target
node,
wherein applying the row change associated with the first
transaction message to the table copy at the target node
comprises:
placing the first transaction message in a work queue at
the target node; and
applying the row change associated with the first trans-
action message in parallel with applying a row change
associated with the preceding non-completed trans-
action message via a plurality of agent threads at the
target node.
2. The method of claim 1, wherein determining whether the
first transaction message depends on the preceding non-com-
pleted transaction message comprises:
determining that the row change of the first transaction
message is an insert or a key update type of change;

comparing a new replication key value in the row change of
the first transaction message to an old replication key
value of a row change of the preceding non-completed
transaction message; and

10

15

20

25

30

35

40

45

50

55

65

10

determining that the first transaction message depends on
the preceding non-completed transaction message if the
new replication key value in the row change of the first
transaction message is the same as the old replication
key value in the row change of the preceding non-com-
pleted transaction message,
wherein comparing the new replication key value in the
row change of the first transaction message to the old
replication key value of the row change of the preceding
non-completed transaction message comprises:

comparing a hash value of the new replication key value in
the row change of the first transaction value of old rep-
lication key value in the row change of the preceding
non-completed transaction message.
3. The method of claim 1, wherein determining whether the
first transaction message depends on the preceding non-com-
pleted transaction message comprises:
determining that the row change of the first transaction
message is a delete or a key update type of change;

comparing an old replication key value in the row change
of the first transaction message to a new replication key
value in a row change of the preceding non-completed
transaction message; and

determining that the first transaction message depends on

the preceding non-completed transaction message if the
old replication key value in the row change of the first
transaction message is the same as the new replication
key value in the row change of the preceding non-com-
pleted transaction message,

wherein comparing the old replication key value in the row

change of the first transaction message to the new repli-
cation key value in the row change of the preceding
non-completed transaction message comprises:
comparing a hash value of the old replication key value in
the row change of the first transaction message to a hash
value of the new replication key value in the row change
of the preceding non-completed transaction message.

4. The method of claim 1, wherein determining whether the
first transaction message depends on the preceding non-com-
pleted transaction message comprises:

determining that the row change of the first transaction

message is an update type of change;

comparing a new replication key value in the row change of

the first transaction message to a new replication key
value in a row change of the preceding non-completed
transaction message; and

determining that the first transaction message depends on

the preceding non-completed transaction message if the
new replication key value in the row change of the first
transaction message is the same as the new replication
key value in the row change of the preceding non-com-
pleted transaction message,

wherein comparing the new replication key value in the

row change of the first transaction message to the new
replication key value in the row change of the preceding
non-completed transaction message comprises:
comparing a hash value of the new replication key value in
the row change of the first transaction message to a hash
value of the new replication key value in the row change
of the preceding non-completed transaction message.

5. A system for handling transaction messages in asynchro-
nous data replication in a database system, the system com-
prising:

a source node computing device; and

a target node computing device, wherein the target node

computing device comprises:

US 9,244,996 B2

11

a receive queue configured to receive a first transaction
message from the source node computing device,
wherein the first transaction message comprises at least
one recovery log entry for a row change on a table copy
at the source node; and
an apply program, wherein the apply program, when
executed by the target node computing device, causes
the target node computing device to:
determine whether the first transaction message depends
on a preceding non-completed transaction message;
responsive to the first transaction message not depending
on the preceding non-completed transaction, apply the
row change associated with the first transaction message
to the table copy at the target node without holding the
first transaction message; and
responsive to application of the row change associated with
the first transaction message being complete, place the
first transaction message in a done queue at the target
node,
wherein applying the row change associated with the first
transaction message to the table copy at the target node
comprises:
placing the first transaction message in a work queue at
the target node; and

applying the row change associated with the first trans-
action message in parallel with applying a row change
associated with the preceding non-completed trans-
action message via a plurality of agent threads at the
target node.

6. The system of claim 5, wherein determining whether the
first transaction message depends on the preceding non-com-
pleted transaction message comprises:

determining that the row change of the first transaction
message is an insert or a key update type of change;

comparing a hash value of the new replication key value in
the row change of the first transaction message to a hash
value of the old replication key value in the row change
of the preceding non-completed transaction message;
and

determining that the first transaction message depends on
the preceding non-completed transaction message if the
hash value of the new replication key value in the row
change of'the first transaction message is the same as the
hash value of the old replication key value in the row
change of the preceding non-completed transaction
message.

7. The system of claim 5, wherein determining whether the
first transaction message depends on the preceding non-com-
pleted transaction message comprises:

determining that the row change of the first transaction
message is a delete or a key update type of change;

comparing a hash value of the old replication key value in
the row change of the first transaction message to a hash
value of the new replication key value in the row change
of the preceding non-completed transaction message;
and

determining that the first transaction message depends on
the preceding non-completed transaction message if the
hash value of the old replication key value in the row
change of'the first transaction message is the same as the
hash value of the new replication key value in the row
change of the preceding non-completed transaction
message.

8. The system of claim 5, wherein determining whether the

first transaction message depends on the preceding non-com-
pleted transaction message comprises:

10

15

25

30

35

40

45

50

55

60

65

12

determining that the row change of the first transaction

message is an update type of change;

comparing a hash value of the new replication key value in

the row change of the first transaction message to a hash
value of the new replication key value in the row change
of the preceding non-completed transaction message;
and

determining that the first transaction message depends on

the preceding non-completed transaction message if the
hash value of the new replication key value in the row
change of'the first transaction message is the same as the
hash value of the new replication key value in the row
change of the preceding non-completed transaction
message.

9. The method of claim 1, further comprising:

responsive to the first transaction message depending on

the preceding non-completed transaction,

holding the first transaction message;

completing the preceding non-completed transaction
message including applying the row change associ-
ated with the preceding non-completed transaction
message to the table copy at the target node; and

responsive to completing the preceding non-completed
transaction message, releasing the first transaction
message and applying the row change associated with
the first transaction message to the table copy at the
target node.

10. The method of claim 1, wherein determining whether
the first transaction message depends on a preceding non-
completed transaction message comprises:

responsive to a determination that the first transaction mes-

sage depends on a preceding transaction message,
checking the done queue to determine whether the pre-
ceding transaction message is a completed transaction
message; and

responsive to the preceding transaction message being a

completed transaction message, determining that the
first transaction message does not depend on a preceding
non-completed transaction message.

11. The method of claim 1, further comprising:

responsive to application of the row change associated with

the first message being complete, adding an entry to a
control table to indicate that the first transaction message
is complete; and

removing, by a background thread in the target node, trans-

action messages corresponding to entries in the control
table from the receive queue.

12. The system of claim 5, wherein the apply program
further causes the target node computing device to:

responsive to the first transaction message depending on

the preceding non-completed transaction,

hold the first transaction message;

complete the preceding non-completed transaction mes-
sage including applying the row change associated
with the preceding non-completed transaction mes-
sage to the table copy at the target node; and

responsive to completing the preceding non-completed
transaction message, release the first transaction mes-
sage and applying the row change associated with the
first transaction message to the table copy at the target
node.

13. The system of claim 5, wherein determining whether
the first transaction message depends on a preceding non-
completed transaction message comprises:

responsive to a determination that the first transaction mes-

sage depends on a preceding transaction message,

US 9,244,996 B2
13

checking the done queue to determine whether the pre-
ceding transaction message is a completed transaction
message; and
responsive to the preceding transaction message being a
completed transaction message, determining that the 5
first transaction message does not depend on a preceding
non-completed transaction message.
14. The system of claim 5, wherein the receive queue is a
persistent queue and wherein the work queue and the done
queue are non-persistent queues. 10

#* #* #* #* #*

14

